High efficient electrical stimulation of hippocampal slices with vertically aligned carbon nanofiber microbrush array
نویسندگان
چکیده
Long-term neuroprostheses for functional electrical stimulation must efficiently stimulate tissue without electrolyzing water and raising the extracellular pH to toxic levels. Comparison of the stimulation efficiency of tungsten wire electrodes (W wires), platinum microelectrode arrays (PtMEA), as-grown vertically aligned carbon nanofiber microbrush arrays (VACNF MBAs), and polypyrrole coated (PPy-coated) VACNF MBAs in eliciting field potentials in the hippocampus slice indicates that, at low stimulating voltages that preclude the electrolysis of water, only the PPy-coated VACNF MBA is able to stimulate the CA3 to CA1 pathway. Unlike the W wires, PtMEA, as-grown VACNF MBA, and the PPy-coated VACNF MBA elicit only excitatory postsynaptic potentials (EPSPs). Furthermore, the PPy-coated VACNF MBA evokes somatic action potentials in addition to EPSPs. These results highlight the PPy-coated VACNF's advantages in lower electrode impedance, ability to stimulate tissue through a biocompatible chloride flux, and stable vertical alignment in liquid that enables access to spatially confined regions of neuronal cells.
منابع مشابه
Vertically aligned carbon nanofiber arrays record electrophysiological signals from hippocampal slices.
Vertically aligned carbon nanofiber (VACNF) electrode arrays were tested for their potential application in recording neuro-electrophysiological activity. We report, for the first time, stimulation and extracellular recording of spontaneous and evoked neuroelectrical activity in organotypic hippocampal slice cultures with ultramicroelectrode VACNF arrays. Because the electrodes are carbon-based...
متن کاملOptimized Conditions for Catalytic Chemical Vapor Deposition of Vertically Aligned Carbon Nanotubes
Here, we have synthesized vertically aligned carbon nanotubes (VA-CNTs), using chemical vapor deposition (CVD) method. Cobalt and ethanol are used as the catalyst and the carbon source, respectively. The effects of ethanol flow rate, thickness of Co catalyst film, and growth time on the properties of the carbon nanotube growth are investigated. The results show that the flow rate of ethanol and...
متن کاملFabrication and characterization of vertically aligned carbon nanofiber electrodes for biosensing applications
We describe recent experiments aimed at using carbon nanofibers for biosensing applications. Vertically aligned carbon nanofibers are grown on molybdenum electrodes to provide electrical contact to the nanofibers. Upon exposure to electrolyte solutions, we find that short nanofibers of <1 Am length can be wet and dried without significant mechanical disruption. However, longer fibers are prone ...
متن کاملBiofouling Behavior on Forward Osmosis Using Vertically Aligned CNT Membrane on Alumina
Nowadays, forward osmosis (FO) with many advantages in water treatment, are so attractive for researchers and investigators that the studies are going to optimize and increase its efficiency. However one of the most controversial operating malfunctions of FO process is fouling that limits the FO global application. In the following research, vertically aligned carbon nanotube (VACNT) on alumina...
متن کاملRole of adenosine receptors and protein phosphatases in the reversal of pentylenetetrazol-induced potentiation phenomenon by theta pulse stimulation in the CA1 region of rat hippocampal slices
The effect of theta pulse stimulation (TPS) on pentylenetetrazol (PTZ)-induced long-term potentiation of population spikes (PS) was studied in the hippocampal CA1 in vitro. A transient PTZ application produced a long-lasting enhancement of PS amplitude. A 3-min episode of TPS delivered at a higher intensity produced complete reversal of the PTZ potentiation when delivered during the last minute...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomedical Microdevices
دوره 11 شماره
صفحات -
تاریخ انتشار 2009